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Previous work by the author on diatomic molecules and by others on polyatomic systems has 
revealed that Kohn-Sham density-functional theory with “gradient corrected” exchange- 
correlation approximations gives remarkably good molecular bond and atomization energies. 
In the present communication, we report the results of an extensive survey of density- 
functional atomization energies on the 55 molecules of the Gaussian-l thermochemical data 
base of Pople and co-workers [J. Chem. Phys. 90, 5622 ( 1989); 93,2537 ( 1990) 1. These 
calculations have been performed by the fully numerical molecules (NUMOL) program of 
Becke and Dickson [J. Chem. Phys. 92,361O ( 1990) ] and are therefore free of basis-set 
uncertainties. We find an average absolute error in the total atomization energies of our 55 test 
molecules of 3.7 kcal/mol, compared to 1.6 kcal/mol for the Gaussian-l procedure and 1.2 
kcal/mol for Gaussian-2. 

I. INTRODUCTION 

Since the seminal work of Hohenberg, Kohn, and 
Sham,’ the density-functional theory (DF”T) of electronic 
structure has seen significant theoretical and formal ad- 
vances.2 No longer reliant solely on the intuitive insights of 
its earliest incarnation, Slater’s Xa theory,3 contemporary 
DFT is built soundly on a physically and mathematically 
rigorous foundation. At the same time, significant computa- 
tional developments have stimulated a growing interest in 
the application of DFT methods to substantial molecular 
and chemical problems (see Ref. 4 for a good review). 

The workhorse of density-functional quantum chemis- 
try at present is the so-called “local spin-density” approxi- 
mation (LSDA) for exchange-correlation energy. Accumu- 
lated experience over many years has revealed that the 
LSDA gives excellent molecular geometries, vibrational fre- 
quencies, and single-particle properties,4 but seriously over- 
estimates molecular bond energies.5V6 In 1985, however, the 
author discovered that relatively simple corrections to the 
LSDA depending on spin-density gradients improved DFT 
bond energies remarkably.‘** Ziegler and co-workers imme- 
diately applied such “gradient corrections” to a wide variety 
of challenging problems in transition-metal chemistry with 
excellent results.’ Thanks to subsequent improvements in 
their underlying theory and functional forms, exchange-cor- 
relation gradient corrections are now attracting the atten- 
tion of a larger number of DFT researchers.4 

The impressive evidence of Ziegler and co-workers not- 
withstanding,’ we believe that a precise and systematic sur- 
vey of the thermochemical capabilities of density-functional 
theory is desirable, especially with respect to accurately 
known experimental data. Our own previous work has fo- 
cused on fully numerical, basis-set-free bond energy calcula- 
tions on homonuclear diatomic molecules.5-8 With the re- 
cent extension of our basis-set-free methodology to 
poZyatomic molecules in general,‘&13 we can now expand 
our fully numerical diatomic surveys to include polyatomic 
tests as well. Our “numerical molecules” program system 

(dubbed NUMOL ) , ’ 3 is uniquely suited for benchmark ap- 
plications of this type, since the everpresent basis-set trunca- 
tion error of conventional linear-combination-of-atomic-or- 
bitals (LCAO) methods is eliminated. 

The timing for a benchmark study of density-functional 
thermochemistry could not be better. Pople and co- 
workers14*15 have recently published the results of extensive 
tests of the “Gaussian-l” (Gl > ab initio thermochemical 
procedure on 55 organic and inorganic systems with accu- 
rately known experimental atomization energies. Even more 
recently, a revised “Gaussian-2” (G2) procedure has been 
calibrated on the same 55-molecule set. l6 Obviously, a direct 
comparison between contemporary density-functional 
methods and the ab initio G 1 and G2 procedures would be of 
great interest. We therefore report in the present communi- 
cation the results of fully numerical DFT atomization ener- 
gy calculations, employing both the LSDA exchange-corre- 
lation functional itself and a gradient correction for 
exchange only, on the 55 first- and second-row molecules of 
the Gl data base. 

II. BASIC THEORY 
In this section, the Kohn-Sham formulation of density- 

functional theory is outlined briefly. Though many alterna- 
tive DFT formulations are possible, Kohn-Sham theory is 
currently the most popular and the most powerful. The read- 
er is referred to Ref. 2 for a detailed and comprehensive 
discussion. 

Given an arbitrary N-electron atom or molecule with 
total electronic density p, let us imagine a corresponding 
reference system of ultimate simplicity-a system of N inde- 
pendent noninteracting electrons in a noninteracting one- 
body potential V,, yielding the same density p. Then, we 
express the total electronic energy as follows: 

E = To + 
s 

pv,,, d 3r + t s s 
p(r, )p(r, > 

total 
rlz 

Xd3r, d3r2 + E,,, (1) 
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where To is the kinetic energy of the noninteracting refer- 
ence system, the second and third terms are the nuclear in- 
teraction energy and the classical electrostatic self-interac- 
tion energy, respectively, and the last term E,, is the 
density-functional exchange-correlation energy. The nonin- 
teracting reference orbitals $i satisfy, by definition, the fol- 
lowing independent-particle Schrodinger equation: 

- $V’$i + VKs $i = Ei 4, (2) 
with the local, one-body Kohn-Sham potential V,, fixed by 
our original assumption that the noninteracting density 

P’$ Igil’ (3) 
I 

equals the density of the fully interacting system. Equation 
( 1 ), in fact, deJnes the exchange-correlation energy E,, . 
Consequently, E,, contains a great deal of information, in- 
cluding all the effects of two-body exchange and dynamical 
correlations, and a kinetic energy component as well. 

Nevertheless, it can be shown’ that EX, depends 
uniquely on the total electronic densityp and that the Kohn- 
Sham potential is given by 

v,, = VII”, + v,, + vxc, 
where 

(4) 

P('2) d3r V,,(r*)= - f 2 (5) 
ri2 

and 
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ciated energy approximations. To the extent that known 
constraints contain the essential physics of exchange and 
correlation phenomena, hole-function models within the 
Kohn-Sham formalism provide a simple and convenient al- 
ternative to traditional ab initio technology. 

The simplest and most popular exchange-correlation 
approximation, the “local spin-density” approximation 
(LSDA) has the form 

ELSDA- 
xc - exe [pa (r),p8(r) ]d3r, (8) 

where the integrand e,, is the exchange-correlation energy 
density of a uniform electron gas with spin densities pp (r) 
and ps (r) equal to their 1ocaI atomic or molecular values. 
This approximation corresponds to replacement of the exact 
exchange-correlation hole at reference point r with a model 
hole from electron gas theory. The functional eXc has been 
well characterized by Monte Carlo simulations” and we 
employ in the present work the associated parametrization 
of Vosko, Wilk, and Nusair.” 

(6) 

with Eq. (6) representing the functional derivative of E,, 
with respect to p. These equations are generalized easily to 
spin unrestricted cases also (i.e., par #pp , where CL and p 
denote up and down electron spins) if two Kohn-Sham po- 
tentials V& are admitted, one for each spin a, with V& the 
functional derivative of E,, with respect to the spin density 
PC. 

Of course, an atomic or molecular density is not homo- 
geneous, even locally, and we thus seek improvements to the 
LSDA incorporating nonuniformity information. The sim- 
plest beyond-LSDA corrections depend on local spin-den- 
sity gradients in addition to the density itself and will be 
called “gradient corrections” in this communication. These 
have been found particularly effective in the calculation of 
molecular dissociation energies (see Refs. 6-9) and, consid- 
ering the well-known difficulties of ab initio thermoche- 
mistry, have given density-functional theory new and excit- 
ing vigor. We shall not review the extensive and growing 
literature of exchange-correlation gradient corrections here, 
but shall concentrate on a recent correction of the “exchange 
only” type with particularly interesting properties. 

Moreover, E,, is rigorously relatedi7”* to a two-elec- 
tron exchange-correlation “hole” function h,, (1,2) by the 
following two-electron integration: 

For reference points asymptotically far from a finite sys- 
tem, as in the exponential tails of atomic and molecular 
charge distributions, the exchange-correlation energy inte- 
gral assumes the limiting form 

E,, =+ P(l%cc(W d3r 
I 

d3r 
21 (7) 

r12 

Exe (r 
1 ‘co)= -- 

s 
Ld3r 

2 r 
which is a simple consequence of the well-known hole nor- 
malization constraint 

where h,, is determined by quantum mechanical pair prob- 
abilities and an integration over interelectronic coupling 
strength. Unfortunately, first-principles evaluation of ex- 
change-correlation holes is intractable in all but very trivial 
systems. Therefore, despite the rigor of this general formal- 
ism, its practical value is not immediately obvious. 

s h,, (1,2)d 3r2 = - 1 (10) 

It is known, however, that exchange-correlation holes 
satisfy a variety of simple yet restrictiveglobalconstraints on 
such properties as normalization, limiting behavior for small 
and large r12, cusp conditions, scaling conditions, etc. No- 
tice, also, that the r2 integration in Eq. (7) samples only the 
spherical average of hXC (1,2) about the reference point r, 
and hence the details of its angular dependence are unimpor- 
tant. Thus, global constraints can be used as guides to con- 
struct spherically symmetric hole-function models and asso- 

valid at any reference point 1. Equation (9) follows immedi- 
ately from Eqs. (7) and (IO) under consideration that the 
exchange-correlation hole remains “attached” to a finite sys- 
tem for reference points approaching infinity. It is a major 
and well-known failure of the LSDA that this correct 
asymptotic behavior is not reproduced. Given, therefore, 
that molecular bond formation essentially involves the over- 
lap of atomic exponential tails, we begin to understand why 
the LSDA describes bond dissociation energies poorly. 

On the other hand, the following gradient-corrected ex- 
change-correlation functional correctly reproduces, by de- 
sign,6,21 the exact asymptotic limit of Eq. (9): 
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E xc = E k;D” - b TJP:” *‘, 
( 1 + 66x,, sinh - Ix,) 

d3r, 

(11) 
where x, is a dimensionless nonuniformity parameter de- 
fined by 

(12) 

and b is a constant of value 0.0042 a.u. as determined by a fit 
to exact Hartree-Fock exchange energies of the noble gas 
atoms He through Rn.” The reader may easily verify that, 
on substitution of an exponential tail density into the above 
expression, one obtains precisely Eq. (9) in the r+ CO limit. 

Note that the correction of Eq. (11) is an “exchange 
only” correction in its dimensionality (or equivalently, its 
scaling properties22 ) and its trivial spin dependence (i.e., a 
sum of two distinct terms, one for each spin). It is the only 
reported exchange-correlation correction of the gradient 
type which reproduces the exact asymptotic limit of Eq. (9). 
Also, the fact that Eq. ( 11) contains only a single free pa- 
rameter b highly recommends this particular functional over 
several other functionals, containing two or more param- 
eters, suggested in the literature.23 

Dynamical correlation corrections are considerably 
more complicated in their scaling properties and their spin 
dependence and are not considered in the present work. For- 
tunately, previous work on diatomic systems has indicated 
that their influence on thermochemical calculations is rela- 
tively small compared to the exchange correction6 and may 
therefore be neglected in a first approximation. Let us also 
point out that in previous work we have often espoused7’8”3 
the use of the correlation self-interaction correction of Stoll, 
Pavlidou, and Preuss24 (SPP). On the basis of unpublished 
work by us and our collaborators, it appears that the SPP 
correction, when combined with gradient corrections for ex- 
change, yields much too long molecular bond lengths despite 
its excellent bond energies. We therefore emphasize that the 
present work employs the “full” LSDA for dynamical corre- 
lation with no corrections whatsoever. 

For the benefit of interested readers, we list, in Tables I 
and II, density-functional exchange and correlation energies 
of the present model for all first- and second-row atoms from 
H through Ar. These data are obtained from spherically 
symmetrized atomic Hartree-Fock spin densities and have 
been compiled previously in Refs. 18 (correlation) and 21 
(exchange). The quality of the gradient-corrected exchange 
energies of Table I is excellent, whereas the LSDA correla- 
tion energies in Table II tend to overestimate the exact re- 
sults by a factor of roughly 2. The physical origin of this well- 
known discrepancy has been elucidated by Stoll and 
co-workers24 and arises from the fact that the uniform-gas 
correlation hole compensates, in part, for long-range oscilla- 
tions in the uniform-gas exchange hole. Separation of the 
total LSDA exchange-correlation energy into an “ex- 
change” and a “correlation” piece thus introduces an arti- 
fact into each component which renders comparisons such 
as those of Table II somewhat ambiguous. We should not, 
therefore, be overly alarmed by the apparent discrepancies in 
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TABLE I. Atomic exchange energies (a.u.). 

Atom Exact” LSDA” GC 

H - 0.313 - 0.268 - 0.310 
He - 1.026 - 0.884 - 1.025 
Li - 1.781 - 1.538 - 1.775 
Be - 2.667 - 2.312 - 2.658 
B - 3.744 - 3.212 - 3.728 
C - 5.045 - 4.459 - 5.032 
N - 6.596 - 5.893 - 6.589 
0 - 8.174 - 7.342 - 8.169 
F - 10.00 - 9.052 - 10.02 

Ne - 12.11 - 11.03 - 12.14 
Na - 14.02 - 12.79 - 14.03 
Mg - 15.99 - 14.61 - 16.00 
Al - 18.07 - 16.53 - 18.06 
Si - 20.28 - 18.59 - 20.27 
P - 22.64 - 20.79 - 22.62 
S - 25.00 - 23.00 - 24.98 
Cl - 27.51 - 25.35 - 27.49 
Ar - 30.19 - 27.86 - 30.15 

’ Exact-exact Hartree-Fock (from Ref. 2 1) . 
b LSDA-local spin-density approximation. 
’ GC-with gradient correction of Eq. ( 11). 

Table II, but should view the functional of Eq. ( 11) as a total 
exchange-correlation model. 

III. THE PRESENT CALCULATIONS 

The present calculations actually serve a double pur- 
pose. As implied by its title and as described in Sec. I, this 
paper is concerned primarily with the systematic testing of 
density-functional thermochemistry on the 55 molecules of 
the Gaussian-l data base.14,15 The Gl data base has been 
carefully selected by its authors to include only molecules 
with experimental total atomization energies known to with- 
in 1 kcal/mol. It is therefore of obvious and great value for 
the testing of quantum thermochemical methods. 

Also, however, these calculations constitute the first ex- 

TABLE II. Atomic correlation energies (a.u.). 

Atom Exact” LSDAb 

H 0.000 - 0.022 
He - 0.042 -0.113 
Li - 0.046 - 0.151 
Be - 0.094 - 0.225 
B - 0.125 - 0.291 
C - 0.157 - 0.360 
N - 0.189 - 0.430 
0 - 0.258 - 0.539 
F - 0.322 - 0.644 

Ne - 0.390 - 0.746 
Na - 0.398 - 0.805 
Mg - 0.444 - 0.892 
Al - 0.479 - 0.966 
Si - 0.520 - 1.042 
P - 0.553 - 1.119 
S - 0.634 - 1.227 
Cl - 0.714 - 1.330 
Ar - 0.787 - 1.431 

a Exact (from Ref. 18). 
b LSDA-local spin-density approximation. 
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tensive test of our new and unique basis-set-free NUMOL 
program system. ‘O-l 3 Since its introduction in 1989,13 the 
NUMOL program has undergone steady improvement and 
enhancement. Discussion of technical developments is de- 
ferred, however, to other publications. For the present pur- 
pose, it is sufficient to note that our computational method is 
fully numerical and completely basis-set free. All requisite 
procedures (numerical integration,” solution of Poisson’s 
equation for the electronic Coulomb potential,” and solu- 
tion of Schrodinger’s single-particle equation for the molec- 
ular orbitals12 ) are carried out by separation into indepen- 
dent single-center problems using a “smooth” single-center 
partitioning scheme. The resulting atomiclike problems are 
handled easily using standard numerical methods in spheri- 
cal polar coordinates and reassembled when necessary by 
cubic spline interpolation. The molecular orbitals are com- 
puted by an iterative perturbation-variation technique- 
first-order orbital corrections are obtained from numerical 
solution of an inhomogeneous Kohn-Sham equation and 
then mixed variationally with the starting orbitals. This nu- 
merical perturbation-variation cycle is then iterated as part 
of the normal self-consistent field (SCF) iteration proce- 
dure. Interested readers will find further details in Ref. 13. 

Since our method is basis-set free, Hellmann-Feynman 
forces should be calculable by straightforward numerical 
electrostatic integration, provided, of course, that sufficient 
numerical precision is achieved overall. Indeed, tests of our 
numerically derived forces indicate that their quality is quite 
adequate for the purpose of geometry optimization” and 
NUMOL has recently been programmed to optimize molec- 
ular geometries using either internal or Cartesian coordi- 
nates at the LSDA theoretical level. Special features of our 
optimization schemes will be discussed elsewhere. Suffice it 
to say that all 55 molecular structures of the present survey 
were optimized successfully by our Cartesian algorithm and 
comparisons of their geometries with experiment will be pro- 
vided in future publications. 

Our procedure for thermochemical energy studies is ex- 
tremely simple. First, molecular geometries are optimized at 
the LSDA level and the gradient correction of Eq. ( 11) then 
added in a “post-LSDA” manner at the optimized LSDA 
geometry. This is a matter of convenience, as the gradient 
part of the functional derivative of Eq. (6) is awkward to 
calculate by the finite-difference methods of NUMOL, espe- 
cially in the sensitive asymptotic limit. Unpublished work by 
the author and a very recent report of Fan and Zieglerz6 have 
justified the post-LSDA approach. Second, zero-point vibra- 
tional energy corrections must be considered in order to 
make comparisons with experiment. These have been tabu- 
lated in the Gaussian-l papers’4,‘5 and have been adopted 
without change in the present work. Finally, “nonspherical 
corrections” must be made for our reference atoms.” These 
can be quite substantial in gradient-corrected density-func- 
tional theories (e.g., of the order of 10 kcal/mol in the case of 
oxygen) and, therefore, our reference atomic energies have 
been calculated using nonspherical open-shell densities de- 
rived from nonspherical self-consistent fields by NUMOL 
computations on appropriately populated dimers at large 
internuclear separations. 

Note also that many of the molecules of the Gl data base 
(and, of course, our reference atoms) have open-shell elec- 
tronic structures. These have been treated using spin-unres- 
tricted Kohn-Sham theory, outlined in Sec. II, which is 
analogous to the familiar unrestricted Hartree-Fock 
(UHF) procedure of ab initio theory. 

IV. RESULTS AND CONCLUSIONS 
Total atomization energies of the molecules of the Gl 

data base are listed in Tables III and IV for first- and second- 
row systems, respectively. We give results for both the local 
spin-density approximation itself and for the LSDA plus the 
gradient correction of Eq. ( 11) (denoted LSDA-GC in the 
tables). Absolute errors with respect to experiment are indi- 
cated in brackets. 

A variety of meshes were employed in these computa- 
tions to establish a reasonable numerical error estimate. The 
number of radial points on each nucleus has been varied 
from5X(Z2’3+ 1) to ~OX(Z~‘~+ l),whereZisthenu- 
clear charge, and two classes of angular meshes consisting of 
50/l 10 and 1 lo/194 points for nuclei with Z(4/2)5, re- 
spectively, have also been tested. As a result of our trials, we 
believe that the total atomization energies reported in Tables 

TABLE III. Atomization energies O0 (kcal/mol) of first-row molecules. 

Expt.’ LSDAb LSDA-GC 

LiH 56.0 58.9 
BeH 46.9 57.7 
CH 79.9 88.0 
CH, (trip.) 179.6 202.7 
CH, (sing.) 170.6 188.9 
CH, 289.2 322.0 
CH, 392.5 435.7 
NH 19.0 91.0 
NH, 170.0 196.6 
NH, 276.7 316.8 
OH 101.3 118.3 
H,O 219.3 253.8 
HF 135.2 156.7 
Li, 24.0 23.1 
LiF 137.6 154.2 
C, Hz 388.9 443.6 
C, H, 531.9 601.8 
G He 666.3 749.1 
CN 176.6 217.1 
HCN 301.8 350.8 
co 256.2 295.9 
HCO 270.3 325.0 
H,CO 357.2 417.6 
CH, OH 480.8 555.7 
N* 225.1 264.1 
N,H, 405.4 483.8 
NO 150.1 196.2 
02 118.0 172.4 
Hz 0, 252.3 3 19.0 
F2 36.9 76.7 
co* 381.9 465.9 

(2.9) 61.7 
(10.8) 57.9 
(8.1) 80.4 
(23.1) 184.6 
(18.3) 114.9 
(32.8) 295.9 
(43.2) 397.1 
(12.0) 86.7 
(26.6) 181.1 
(40.1) 285.1 
(17.0) 100.8 
(34.5) 222.4 
(21.5) 136.7 
( - 0.9) 21.1 
(16.6) 
(54.7) 
(69.9) 
(83.4) 
(40.5) 
(49.0) 
(39.7) 
( 54.7) 
(60.4) 
(74.9) 
(39.0) 
(78.4) 
(46.1) 
(54.4) 
(66.7) 
(39.8) 
(84.0) 

138.8 
387.6 
532.4 
665.8 
182.7 
306.7 
253.4 
274.6 
359.8 
480.9 
230.6 
413.4 
154.3 
124.8 
255.0 

40.2 
381.4 

(5.7) 
(11.0) 
(0.5) 
(5.0) 
(4.3) 
(6.7) 
(5.2) 
(7.7) 
(11.1) 
(8.4) 
( -0.5) 
(3.1) 
(1.5) 
( - 2.9) 
Cl.21 
( - 1.3) 
(0.5) 
( - 0.5) 
(6.1) 
(4.9) 
( - 2.8) 
(4.3) 
(2.6) 
(0.1) 
(5.5) 
(8.0) 
(4.2) 
(6.8) 
(2.7) 
(3.3) 
( - 0.5) 

“Expt.-from Refs. 14 and 15. 
bLSDA--local spin-density approximation [Eq. (8) 1. 
c LSDA-GC-post-LSDA gradient corrected [ Eq. ( 11) 1. 
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III and IV have a numerical precision of better than 1 kcal/ 
mol. All computations were carried out on an IBM RISC 
System/6000 model 320 workstation. 

Notice, first of all, that the LSDA seriously overesti- 
mates the atomization energies of this study. The worst case 
is CO,, overbound by 84 kcal/mol. Notice also that, in a 
relative sense, the F, molecule is overbound by over 100%. 
The average absolute error for all 55 molecules in Tables III 
and IV is 36.2 kcal/mol (or 1.6 eV, 15 1 kJ/mol) . Clearly, 
the local spin-density approximation is inadequate for ther- 
mochemical purposes. 

Addition of the gradient correction (LSDA-GC), on 
the other hand, improves our results dramatically. Now the 
largest errors are of the order of 11 kcal/mol for, interest- 
ingly enough, some of the “lightest” molecules in Table III 
( BeH and NH, ) . This emphasizes an aspect of density-func- 
tional theory that is, at the same time, its great weakness and 
yet its great strength-namely, DFT does not discriminate 
between molecules containing light atoms and those con- 
taining heavy atoms. DFT computations can be carried out 
with uniform ease anywhere in the Periodic Table (witness, 
e.g., the applications collected in Ref. 4). 

The average absolute error for the LSDA-GC results is 
3.7 kcal/mol (or 0.16 eV, 16 kJ/mol). This is ten times 
smaller than the error of the LSDA and, in our opinion, very 
respectably small by most other standards. Our theory does 
not match the accuracy of the Gl and G2 procedures, with 
average absolute errors of 1.6 and 1.2 kcal/mol, respectively, 
but is not inordinately worse. In defense of the density-func- 

TABLE IV. Atomization energies DO (kcal/mol) ofsecond-row molecules. 

Expt. LSDAb LSDA-GC” 

SiH, (sing.) 
SiH, (trip.) 
SiN, 
SiH, 
PH, 
PH, 
KS 
HCl 
Na2 
Si, 
P2 
s2 
Cl, 
NaCl 
SiO 
cs 
so 
Cl0 
CIF 
Si, H, 
CH, Cl 
CH,SH 
HOC1 
so* 

144.4 159.1 (14.7) 150.0 
123.4 139.7 (16.3) 128.4 
214.0 233.8 (19.8) 218.8 
302.8 328.0 (25.2) 308.3 
144.7 165.6 (20.9) 152.4 
227.4 255.1 (27.7) 232.1 
173.2 197.3 (24.1) 174.3 
102.2 116.4 (14.2) 101.7 

16.6 19.9 (3.3) 16.3 
74.0 92.5 (18.5) 73.4 

116.1 142.4 (26.3) 114.7 
100.7 134.4 (33.7) 100.4 

57.2 82.7 (25.5) 51.7 
97.5 102.8 (5.3) 91.0 

190.5 222.4 (31.9) 189.1 
169.5 200.3 (30.8) 165.4 
123.5 166.2 (42.7) 126.6 
63.3 104.1 (40.8) 64.9 
60.3 94.2 (33.9) 59.8 

500.1 549.4 (49.3) 501.3 
371.0 424.9 (53.9) 367.4 
445.1 508.6 (63.5) 441.6 
156.3 203.3 (47.0) 155.6 
254.0 332.5 (78.5) 249.9 

(5.6) 
(5.0) 
(4.8) 
(5.5) 
(7.7) 
(4.7) 
(1.1) 
( - 0.5) 
( - 0.3) 
( - 0.6) 
( - 1.4) 
( - 0.3) 
( - 5.5) 
( - 6.5) 
( - 1.4) 
(-4.1) 
(3.1) 
(1.6) 
( - 0.5) 
(1.2) 
( - 3.6) 
( - 3.5) 
( - 0.7) 
(-4.1) 

’ Expt.-from Refs. 14 and 15. 
b LSDA-local spindensity approximation [ Eq. ( 8 ) 1. 
c tSDA-GC!-post-LSDA gradient corrected [ Eq. ( 11) 1. 

tional approach, however, we reiterate that DFT computa- 
tions of similar quality are possible and, indeed, routine 
throughout the Periodic Table (see Ref. 9). Also, we point 
out that the procedure of the present work is considerably 
simpler than the Gl and the G2 procedures, which involve 
basis-set corrections, MBller-Plesset corrections, a quadrat- 
ic configuration interaction (CI) correction, and a fitted 
“higher level” correction. The present NUMOL calcula- 
tions need no basis-set corrections, are based on an extreme- 
ly simple exchange-correlation functional, and involve no 
adjustments of any kind. 

Gradient corrections for dynamical correlation have 
not been considered in the present work. As discussed in Sec. 
II, proper treatment of atomic and molecular tail behavior is 
of primary concern in describing bond dissociation, and the 
quality of the present and previous6 results supports this 
view. Nevertheless, the fine tuning afforded by correlation 
corrections will be studied in future work. Several interest- 
ing and viable approaches to the density-functional theory of 
dynamical correlations are currently under discussion in the 
literature.‘8*28-3’ It is not yet clear, however, which of the 
existing functionals is preferable and we feel that further 
progress and consolidation is urgently required in this area. 
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