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Introduction
It is a curious (and useful) fact that many proteins prefer
to form crystals with multiple copies in the asymmetric
unit. A recent statistical survey found that this happens
in about one-third of protein crystals [1]. For proteins
whose crystals do not diffract better than to 2.5 Å resolu-
tion, this happens in about half the cases (and 80% of
these crystals contain two copies of the molecule per
asymmetric unit) [2]. At one time, this phenomenon was
generally regarded as a nuisance. The resulting increase
in the size of the unit cell meant that there were more
closely spaced diffraction spots to collect, and that there
were more atoms to refine on computers which were
already stretched to their limits. In papers from the 1970s
reporting crystal structures, there are numerous exam-
ples of researchers throwing away such crystals and going
back to the bench! With modern computers and data-col-
lection methods, the practical difficulties have all but
disappeared and the advantages of redundant informa-
tion have come to the forefront.

In this review, we shall focus on the use of non-crystallo-
graphic symmetry (or NCS, as this redundancy is known)
to obtain better electron-density maps. NCS is also of
great importance in improving the parameter to observa-
tion ratio in refinement [2,3]. In addition, it provides some
information about the effects of crystal packing on protein
conformation, and details of inherent flexibility and con-
formational heterogeneity [4].

The past decade has seen a veritable renaissance of the
use of methods that employ geometric redundancies [5]
in macromolecular diffraction data. Simultaneously, several
new methods have been developed to improve phases.
Collectively, these techniques go under the monicker of
density-modification or phase-refinement techniques.
They all apply heuristics (rules of thumb) as constraints
on either the electron-density map (real space) or the
complex structure factors (reciprocal space). In addition to

improving phases (and thereby the appearance of electron-
density maps), these techniques can extend phase infor-
mation to higher resolution and remove bias from maps
calculated using phases derived from an incorrect or
incomplete model.

Examples of density-modification methods are listed in
Table 1. Density modification is usually carried out as a
cyclic process, in which a map is calculated with the
initial phase set, this map is modified according to one
or more heuristics, and from the modified map, a new
and more accurate set of complex structure factors is
calculated. The new structure factors can then either be
combined with the original ones or used directly to
calculate a new map. In practice, a combination of
several techniques tends to be more powerful than any
individual technique.

Averaging
Molecular averaging is one of the strongest of the
density-modification techniques. The underlying theory
is well-established, and the utility of the technique has
been proven time and again in practice. The foundation
for the reciprocal-space formulation of averaging (as well
as the general molecular replacement method) was laid
in the classic 1962 paper of Rossmann and Blow [6]. The
equivalence between real and reciprocal space NCS
averaging was suggested by Main in 1967 [7], and in
1974 Peter Colman proved it for the special case of
proper symmetry [8]. In the same year, Gérard Bricogne
provided a general proof that real and reciprocal space
NCS averaging are equivalent in a thorough paper [5],
which was followed two years later by a practical
implementation of the method [9]. As Colman and
Bricogne pointed out, there are definite computational
advantages to working in real space (see [10] for a
historical discussion).

The underlying assumption of the averaging technique
is that chemically identical copies of a molecule in phys-
ically distinct (independent) environments will never-
theless have identical conformations. The arrangements
of atoms (and their electron density) therefore will be
identical. This means that their densities can be
averaged to achieve an improvement in the signal-to-
noise ratio of the order of √N, if N is the number of
independent copies. The strategy of improving signal-
to-noise through averaging is used in many areas of
science, for example to enhance electron microscopic
images or (in the old days) continuous-wave NMR
spectra of 13C nuclei.



There are many different circumstances in which a crys-
tallographer may encounter (partially) identical copies of
macromolecules:

1. Non-crystallographic symmetry (more than one copy of
a molecule or complex in the asymmetric unit); this is a
very common phenomenon [1,2], with the number of mol-
ecules in the asymmetric unit ranging from 2 up to 120.

2. Multiple crystal forms (each of which may or may not
have NCS). This is quite common with current large-scale
screening methods for crystallisation conditions, although
often only the best diffracting crystal form is used.

3. Multiple-domain NCS, in which there are different
spatial relationships involving copies of different domains
of a protein (or two proteins in a complex). This occurs,
for instance, with crystals of antibody Fab fragments, in
which different copies commonly have different hinge
angles.

4. Partial NCS, in which only part of the asymmetric unit
obeys the NCS relationship.

5. Any combination of the above.

It is important that the different copies of a molecule or
domain are independent; technically, this means that the
copies of the molecular transforms are sampled in dis-
tinct manners. For example, artificially reducing crystallo-
graphic symmetry (e.g. by considering a P21 crystal with
one molecule per asymmetric unit as if it were P1 with
twofold NCS) does not yield additional information,
whereas two non-isomorphous crystal forms of the same
molecule do. Less obviously, we shall also demonstrate
later that the special case of purely translational NCS
does not lead to completely independent copies of a mol-
ecule. In general, the averaging method is more effective
with increasing number of independent copies (which is

why this technique has been so prominent in virus
crystallography) and also if the solvent content of the
crystal(s) is relatively high.

Theory
The theory underlying molecular averaging is well-estab-
lished and well-documented. We shall therefore only
touch upon it briefly to demonstrate a few issues. The
greatest insight is gained by considering what happens in
reciprocal space when density is averaged in real space. If
the starting map obeys NCS perfectly, the density should
not change, so the structure factors should not change. As
we shall show, this leads to relationships among the struc-
ture factors. In practice, there will be phase errors and the
starting map will not obey NCS perfectly, so averaging
will change the map and the corresponding structure
factors. The equations relating structure factors will then
tell us how information spreads in reciprocal space when
averaging is carried out in real space.

Solvent flattening is usually carried out at the same time
as averaging. In solvent flattening, the density in the
solvent region is typically replaced by its average value ρs.
The equations are derived more easily if we do this by
first subtracting ρs everywhere in the map, multiplying by
zero in the solvent region and by one elsewhere and
finally adding ρs back at every point in the map at the end
of averaging. In fact, in reciprocal space, adding and sub-
tracting a constant density value will only change F(000),
so we can effectively ignore ρs. The combination of flat-
tening and averaging over N molecules related by NCS
can then be expressed in the following equation (illus-
trated schematically in Figure 1):

ρavg(x) = Σi=1,N Mi(x) (1/N) Σj=1,N ρ(xij) (1)

in which Mi(x) is a mask or envelope function that has a
value of one inside the volume Ui, enclosing molecule i,
and zero elsewhere, x is a position vector inside the unit
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Table 1

Examples of density-modification techniques.

Technique Heuristic Remarks References

Solvent flattening the solvent in protein crystals is disordered in time solvent flipping is even [12,19,14]
and space and therefore has flat density more powerful

Molecular averaging chemically identical molecules in physically distinct – [5,6]
environments have identical electron density

Iterative skeletonisation density for a macromolecule is continuous and connected – [48]

Histogram matching distribution of density values for a protein is known – [49]
and depends only on resolution and a temperature factor

Sayre’s equation atomicity (density equals the squared density multiplied not usually true for biomacromolecules, [50]
by a shape function) but it works in practice



cell, and xij is x transformed by the NCS operator that
superimposes molecule i on molecule j. This transformation
is expressed by the combination of a rotation matrix Cij
and a translation vector dij:

xij = Cij x + dij (2)

The averaging operation in Equation 1 can be interpreted
as taking each point within the mask Mi, fetching densi-
ties for each of the N copies of molecule j, averaging and
then repeating the process for each of the molecules i.

The equations relating structure factors are derived by taking
the Fourier transform of both sides of Equation 1. After some
manipulations that will not be reproduced here (but can be
found, for instance, in [11]) the following is obtained:

Favg(h) = (U/NV) Σ
k

F(k) 

Σi=1,N Σj=1,N exp (–2πi k·dij) Gi(h–Cij
T
k) (3)

in which G is the well-known G function or interference
function obtained as the Fourier transform of the mask M:

Gi(l) = (1/U) ∫ Mi(x) exp (2πi l·x) dx (4)

and Cij
T is the transpose of the matrix Cij.

In words, every structure factor resulting from averaging
can be expressed as the weighted sum of the structure
factors with which it interferes (including itself). (Note
that the weighting factors are complex, so they introduce
phase shifts.) Rules of thumb about the behaviour of the
G function can be obtained by approximating the molec-
ular envelope as a sphere, so that the G function can be
expressed analytically. The properties of this function
are such that it only assumes appreciable values near the
origin (i.e. when |h–Cij

T
k| ~ 0 or when h ~ Cij

T
k). What

does this tell us? Firstly, the obvious, namely that
solvent flattening is simply a special case of averaging
(only one NCS-related molecule, with C11 the identity
matrix I and d11 the null translation), and that it is based
on the same phenomenon of structure-factor inter-
ference. In this case, every reflection h interferes with
other reflections k that are close to h. In the case of
general NCS, every reflection interferes not only with
reflections close to it in reciprocal space, but also with
other reflections near points related by the inverse NCS
rotations. The more NCS-related copies there are of a
molecule, the more regions of reciprocal space that are
sampled and the more powerful the averaging will be.
Secondly, the formula also tells us that averaging
becomes more powerful as the G function covers a larger
number of neighbouring reflections in each NCS-related
volume of reciprocal space. This will happen when the
mask can be defined with higher resolution detail. It

will also happen when the volume U covering one mole-
cule is small compared to the volume of the asymmetric
unit, V. In fact, this explains why solvent flattening
(onefold averaging) becomes more powerful as the solvent
content increases.

Gamma correction
In Equation 3, one of the major contributions to a reflec-
tion is that of the reflection itself. Although this has been
appreciated since the earliest days, it is only recently that
this observation has provided a solution to a long-stand-
ing problem: how can the phases from averaging or
solvent flattening be combined with the original phase
information? The modified map is highly correlated to
the input map, so it does not provide fully independent
phase information, and phase combination is not really
justified. On the other hand, Wang argued [12] that
much of the power of solvent flattening in single isomor-
phous replacement comes from the new phase reinforc-
ing one of the two possible phase choices, which requires
phase combination. Abrahams [13] realised that, if the
contribution of the reflection to itself were subtracted,
what remained would be the independent information
coming from other reflections, which could legitimately
be combined with the starting phase information. He
called the contribution of the structure factor to itself γ,
hence the name gamma correction. He demonstrated
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Figure 1

Schematic illustration of NCS averaging, for the general case of improper
NCS. Solvent regions (blue) are flattened (i.e. set to the average solvent
density before averaging). Within the masks (Mi), electron density for the
molecules (green) is replaced by the average of all copies of density
related by NCS operations, indicated by the arrows connecting the
molecules. An asterisk marks one such arrow, which is the transformation
x32 = C32x + d32 that superimposes molecule 3 on molecule 2.



further that gamma correction could be carried out in real
space, by a simple change in the density modification
procedure. The factor γ is obtained by separating the
h = k and i = j terms in Equation 3, to get:

Favg(h) = (U/V) F(h) + 

(U/NV) F(h) Σi=1,N Σj≠i exp (–2πi h·dij)

Gi(h–Cij
T
h) +

(U/NV)Σ
k≠h F(k)Σi=1,N Σj=1,N exp(–2π i k·dij)

Gi(h–Cij
T
k) (5)

so that γ is equal to U/V (i.e. the ratio between the volume
of one copy of the molecule and the volume of the
asymmetric unit). (If there is a significant rotational com-
ponent to the NCS operators, Gi(h–Cij

T
h) will be small so

the Gi-weighted contributions from F(h) will be insignifi-
cant.) The terms in Equation 5 that contain new informa-
tion can be collected to define a structure factor, Fnew(h),
on the same scale as F(h) and Favg(h).

Favg(h) = γF(h) + (1–γ) Fnew(h) (6)

Fnew is a more appropriate source of phase information
for phase combination than Favg. We can solve for Fnew
to get:

Fnew(h) = (1/(1–γ)) Favg(h) – (γ/(1–γ)) F(h) (7)

Equation 7 can be rearranged to show that Fnew can be
obtained by overshifting in the averaging step.

Fnew(h) = F(h) + (1/(1–γ)) (Favg(h) – F(h)) (8)

In other words, gamma correction corresponds to multiply-
ing the structure factor change that would be obtained by
straight averaging and solvent flattening by a factor of
1/(1-γ). In real space, Equation 8 becomes:

ρnew(x) = ρ(x) + (1/(1–γ)) (ρavg(x) – ρ(x)) (9)

In the case of solvent flattening (onefold averaging),
gamma correction can therefore be seen to correspond to
solvent flipping [14] — instead of being flattened, the
solvent density is flipped so that points with a higher than
average density are assigned lower than average density,
and vice versa. When the solvent content is 50%, γ is 0.5
and the factor 1/(1–γ) is 2, which means that the solvent is
flipped exactly; deviations from mean solvent density are
equal in magnitude but opposite in direction to those in
the input map. The theoretical understanding of gamma
correction, expressed in Equation 9, allows one to choose
an optimal ‘flipping factor’ on the basis of the solvent

content, instead of optimising it by trial and error. In the
case of averaging, gamma correction corresponds to using a
greater contribution from the other NCS-related densities
in computing the average.

It should be noted that gamma correction is strictly justi-
fied only for the first step of averaging, because in subse-
quent steps the original information from a reflection will
come back from its neighbours. Nonetheless, practical
experience shows that it overcomes most of the problems
associated with phase combination.

Translational NCS
Equation 5 leads us to another important observation,
which applies in the case of purely translational NCS (i.e.
in which molecules are related by an operator that does
not involve any rotation, such that Cij = I). As discussed
below, translational NCS is quite commonly encountered.
The presence of such NCS will not introduce interference
with reflections in different parts of reciprocal space,
because k ~ h. But there will be new contributions of the
reflection to itself. Mathematically, this can be approached
by assuming twofold translational NCS in the gamma cor-
rection equation, and carrying out some manipulations to
obtain the following:

Favg(h) = γF(h) 

+ (U/2V) Σ
k≠h F(k) G1(h–k) {[1 + exp(2πi h·d12)]

[1 + exp(–2πi k·d12)]} (10)

in which

γ = (U/V) [1 + cos(2πh·d12)] (11)

and d12 is the translation vector between the two NCS-
related molecules.

The strongest reflections will tend to be those in which
h·d12 is close to an integer, so that the two molecules
scatter in phase. In such cases, F(h) makes a larger contri-
bution to itself in the averaged structure factor, leaving
less to come from neighbouring reflections. The most
extreme case is when the translation d12 is composed of
translations of zero or half of the unit cell edges; then the
contributions of the two molecules will cancel for half of
the reflections, and they will add up in phase for the other
half. Additionally, the contributions will cancel for half of
the neighbouring reflections k. In this special case, averag-
ing is equivalent in power to straight solvent flattening.
This can be understood in real space because, for reflec-
tions that add up in phase, the two copies of the density
will be affected in exactly the same way by phase errors.
The two copies of density, therefore, do not give truly
independent information.
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Phase extension
Density modification is often used to propagate phase
information from low resolution to a higher resolution that
is typically near the diffraction limit. An examination of
Equation 3 leads to an important point: one should be
cautious about extending phases in large steps, because
the G function can only spread phase information over a
short distance in reciprocal space [15]. Rules of thumb for
conservative phase extension steps can be obtained by
considering the analytical G function obtained by approxi-
mating the envelope as a sphere.

Practical aspects
In this section, we shall discuss a number of practical
aspects related to averaging. In general, the requirements
for averaging are:

1. Reasonably complete diffraction data.

2. Non-crystallographic symmetry, or different crystal forms
(or both).

3. Initial phases (or a map). The problem of obtaining
phases is obviously not specific for averaging and will not
be discussed further here.

4. Operators (rotation matrices and translation vectors)
relating the various molecules (or domains) inside the
asymmetric unit or (in the case of multiple-crystal form
averaging) between different crystal forms.

5. A molecular envelope or mask, which is a simple binary
3D function (in real space) indicating the extent of space
occupied by one molecule or assembly.

6. Appropriate software. There are many programs available
nowadays (Table 2), and, although there are differences in
implementation details, they essentially use similar algo-
rithms and all do a good job. The discussion here will
largely be independent of the particular choice of program.

Completeness of data
Because the success of averaging depends on information
being spread among reflections, the more complete the
data the better. Rather than leaving the amplitude of a
missing observation as zero, however, it is better to replace
it with the structure factor that was extrapolated from
other reflections in the previous cycle of averaging. A par-
ticularly extreme use was made of such ‘amplitude exten-
sion’ in determining the structure of the trypanosomal
glyceraldehyde phosphate dehydrogenase; sixfold NCS
was exploited to fill in 63% of the observations, which
were missing in a Laue data set [16]. If a molecular
replacement model is available, DFc (defined in [17]) pro-
vides the best guess for the true structure factor in the
absence of a measured amplitude.

NCS or not?
Whether or not one has NCS (and, if so, how many copies
of the molecule there are per asymmetric unit) can often
already be deduced once the cell constants and space
group of the very first crystal are known, or at least once
the first data set has been collected. Typical sources of
information include:

1. Values of VM [18] calculated assuming different numbers
of copies of the molecule, possibly combined with knowl-
edge of the oligomer state under physiological conditions
or in solution. One should keep in mind, however, that
(part of) the symmetry may be crystallographic. For instance,
there are many examples in which the monomeric units of
a functional dimer are related by a crystallographic twofold
rotation axis.

2. The self-rotation function, if it shows one or more clear
solutions. One should keep in mind that (part of) the NCS
may not involve a rotational component, however.

3. The native Patterson map which, for the above reason,
should be calculated as soon as a data set has been col-
lected. If (some) molecules are related by a pure transla-
tion, it will give rise to a large number of identical
intermolecular vectors, and hence a considerable off-origin
peak in the native Patterson. If the translation is pure, this
peak will be comparable in height and volume to the
origin peak; if a small rotational component is present (e.g.
~3–6°), the peak will be correspondingly weaker, and it
may be necessary to restrict the upper resolution limit of
the Patterson map to a value between 6 and 10 Å to
observe the peak.
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Table 2

Programs and program suites for molecular averaging.

Program Author(s) Reference

AVGSYS Smith and Hendrickson [51]

DEMON Vellieux and collaborators [27]

DM Cowtan [52]

ENVELOPE Rossmann [53]

GAP Stuart and Grimes [54]

MAGICSQUASH* Schuller [55]

MAIN Turk [56]

PHASES Furey [57]

RAVE† Kleywegt and Jones [10, 29]

SKEWPLANES Bricogne [9]

SOLOMON Abrahams and Leslie [14]

SQUASH Zhang, Cowtan and Main [58, 59]

*Derived from SQUASH. †Derived from A [10].



If these methods do not lead to a conclusive answer, the
analysis has to be postponed until some form of phase
information is available. For instance:

1. A model of anomalous or heavy atoms, from which the
number of copies of a molecule may be detectable by
analysis of the sites (by looking for sets of atoms with
similar distances); however, heavy atom binding sites can
be perturbed by crystal packing, so they may not reflect
the NCS.

2. Manual or automated inspection of the initial map may
reveal similar shaped pieces of density or larger volumes
of ordered density than can be accounted for by a single
molecule. Regions of ordered density can be highlighted
most easily by constructing Wang–Leslie envelopes [12,19].
Because such an envelope covers a volume equal to that
assumed for the protein part of the unit cell, an envelope
should be made corresponding to each plausible number
of NCS-related copies of the protein.

3. Molecular replacement, in which the packing of the
solutions will often indicate whether or not there is room
for another molecule.

Types of NCS
There are three types of NCS, and it can be of practical
importance to know which one applies to a particular
protein crystal.

1. Proper NCS. This is purely rotational NCS: the NCS
operators form a closed group and the N-mer is invariant
under all operations of this group. Examples are dimers
related by a twofold axis without any screw component
and tetramers related by 222 symmetry. The closed group
property makes the definition of the molecular envelope
simpler — one can simply construct an envelope that
covers the entire N-mer, without worrying about the
precise delineation of the borders between one molecule
and the next. One has to be careful, however, not to
assume the NCS to be proper when it is not, because
small deviations are not unusual and they can lead to con-
siderable problems in the averaging procedure (see Tête-
Favier et al. [20], for a case in point).

2. Purely translational NCS. This is not detectable from
a self-rotation function, but will easily be detected in a
native Patterson map. If two molecules are related by a
translation vector (tx,ty,tz), purely translational NCS will
give rise to a large off-origin peak at position (tx,ty,tz) in
the native Patterson map. This happens, for instance, if a
non-crystallographic rotation axis runs parallel to a
crystallographic rotation axis with the same rotational
component (e.g. twofold axis parallel to a two, four or
sixfold axis). As the statistical study by Wang and Janin
[1] showed, this is extremely common. In this case, the

Patterson peak tells one where the NCS rotation axis is
located in the plane perpendicular to the crystallographic
symmetry axis. One also has to keep in mind that transla-
tional components equal to half of a unit-cell edge will
give rise to systematic absences, which will complicate
the determination of the space group. In addition, it was
shown recently [21] that pairs of enantiomorphic space-
groups (e.g. P61 and P65) cannot be distinguished if there
is a non-crystallographic rotation axis parallel to the crys-
tallographic screw axis.

3. Improper NCS. This is the general case, in which mole-
cules are related by a combination of a rotation and a
translation.

Common to all three types of NCS is that they are local
(i.e. the symmetry only applies within the asymmetric
unit, but does not extend to the rest of the crystal). For
this reason, NCS is sometimes referred to as local symme-
try, as opposed to crystallographic symmetry (which applies
to the entire crystal).

In addition to NCS within a crystal, different crystal forms
also supply phase information. Although it is best to have
an unrelated crystal form, a non-isomorphous crystal of the
same space group also samples the molecular transform
differently and the less isomorphous the better. Apart
from the difficulty of getting initial phase information, it
might even be more valuable to have a non-isomorphous
derivative than a perfectly isomorphous one!

NCS operators
The operators that relate copies of a molecule can be
derived in various ways: firstly, in molecular replacement
cases, the strategy is simple — one just superimposes the
various molecules after solving the rotation and translation
functions and carrying out rigid-body refinement, which
immediately yields the NCS operators. Secondly, informa-
tion about the rotational part of the NCS operators can gen-
erally be obtained from a self-rotation function, which does
not require a model or experimental phases. Thirdly, if one
has experimental phases, but no model, real-space molecu-
lar replacement techniques can be used to find the NCS
operations that relate the densities from copies of the mole-
cules. These techniques, the domain rotation function [22]
and the phased translation function [22,23] are illustrated
schematically in Figure 2. They have been used in solving
the structures of pertussis toxin [24] and the Fyn SH3
domain [25]. The same techniques can be used to find
operators that relate molecules in different crystal forms
(Eleanor J Dodson, personal communication). Finally,
sometimes it is possible to derive the operators by compar-
ing the positions of heavy or anomalous atoms.

In most cases, the initial operators are inaccurate, and it
is important to optimise them before use. Typically, the
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operator is adjusted in small steps to maximise the corre-
lation coefficient between the density inside the mask
and the density in the envelope of the NCS-related mol-
ecule [10]. This technique was used as early as 1976 to
improve the operator between two different crystal forms
of hexokinase [26].

Masks
Masks can be obtained in myriad ways. In molecular
replacement cases, the task is trivial, once solutions have
been obtained. One generates a mask that covers the
entire model (e.g. within a radius of 2–3 Å around each
atom), and then adjusts it to account for differences
between the search model and the actual structure to be

solved. When experimental phase information is available,
one may skeletonise the initial map and generate a mask
around the part of the skeleton that is assumed to consti-
tute one monomer, or one may build a quick-and-dirty
initial model and generate a mask around that.

A local correlation map [27] can be constructed to show
where a particular set of NCS operators is obeyed, which
then provides a mask for the molecule or assembly gov-
erned by that set of operators. The map is computed over
the entire region in which the NCS operators might apply,
which is not generally the same as the asymmetric unit.
The value at each point represents the correlation coeffi-
cient between spheres of electron density related by the
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Figure 2

Schematic illustration of real-space molecular
replacement techniques. (a) The domain
rotation function [22] exploits phase
information to improve the signal-to-noise ratio
in a rotation search. Spheres of density
corresponding to two NCS-related molecules
(molecules 2 and 3 in this example) are cut
out and placed in P1 unit cells, and structure
factors are obtained by map inversion.
Alternatively, the required structure factors
can be obtained in a single step in reciprocal
space using the program GHKL (Liang Tong,
personal communication). The locations of the
molecules can be inferred from a
Wang–Leslie envelope [12,19] which
highlights regions of ordered density. A cross-
rotation function computed with the two sets
of structure factors gives the relative
orientation, which can be expressed as the
matrix C32. (b) After the domain rotation
function, the sphere of density for molecule 3
is rotated and placed in a P1 unit cell with the
same dimensions as the one containing
molecule 2. Structure factors derived from this
density can then be used in a phased
translation function [22,23], which gives the
translational part of the NCS operator, d32.



set of NCS operators. If the set applies to that point, the
correlation will be high, otherwise it will be close to zero.
The signal-to-noise ratio in the correlation coefficients
depends on the size of the spheres; a sphere radius of
about 1.5 times the minimum d-spacing to which the
phases are trusted works well in practice.

A related approach is to execute one cycle of mask-less
averaging — the NCS operators are applied to all points in
the volume in which they might apply. As the operators
are only valid for one of the molecules, mask-less averag-
ing is expected to improve the contrast between the
volume of that molecule and the rest of the asymmetric
unit (where the density will tend to be obliterated). The
mask can then be determined with the traditional
Wang–Leslie method [12,19].

Onefold masks, which will prevent solvent flattening,
should be added to any regions of ordered density that
are not covered by an existing mask. This can arise when
there are local breakdowns in NCS, and it can be
detected by comparison of the combined NCS masks
with a Wang mask.

Initial masks, irrespective of the method used to generate
them, invariably need to be improved in order to fill inter-
nal voids, to remove parts that are isolated from the bulk
of the mask, to remove overlap between the mask and the
copies generated from it under crystallographic and/or
non-crystallographic symmetry and to make sure that all
atoms in the molecule are covered by the mask. The last
procedure can be done interactively [10], for example
using the program O [28], if the model does not yet
include all atoms of the molecule. The other tasks can be
accomplished with mask editing and improvement pro-
grams, such as MAMA [29].

Applications
In this section, we shall highlight some examples of the
most significant applications of molecular averaging, used
between the late 1960s and the mid 1990s. In the subse-
quent section, we shall discuss a few cases from our own
laboratories in more detail.

The first reported applications of molecular averaging (in
real space) date from 1967, chymotrypsin at 2 Å [30] and
haemoglobin at 5.5 Å [31]. It was not until 1974, however,
that the first case occurred in which use of averaging actu-
ally made the difference between solving and not solving
the structure. This was for the structure of D-glyceraldehyde
3-phosphate dehydrogenase [32], fittingly solved by Michael
Rossmann. The first documented example of multiple
crystal form averaging was as early as 1976, when Fletterick
and Steitz used two crystal forms to solve the structure of
yeast hexokinase [26]. They transformed the density from
one crystal form to another, calculated phases from the

transformed density and combined them with MIR phases.
As part of this work, they also developed software to opti-
mise the operator between the two crystal forms.

Use of molecular averaging has been a major factor in
enabling the structures of viruses to be solved. Indeed, a
long-standing but as yet unfulfilled goal is to use the
redundancies inherent to virus structures for ab initio
phasing. In 1978, the first two virus structures, both solved
using Bricogne’s programs, were reported simultaneously:
tobacco mosaic virus (TMV; a disk-shaped virus with
17-fold NCS [33]) and tomato bushy stunt virus (the first
icosahedral virus structure [34]). The structure determina-
tion of TMV also incorporated the first application of
phase extension (from 3.2 to 2.8 Å). An interesting lesson
was learned during the structure determination of another
virus, MS2 [35]. The phasing started with a model derived
from the structure of southern bean mosaic virus (which in
fact turned out to be unrelated to the MS2 structure), with
phase extension from 13 to 3.4 Å. The resulting map was
not interpretable, however. Heavy-atom derivatives there-
fore were used, the heavy-atom sites located and the
phases extended from 8.8 to 3.3 Å. A posteriori analysis
revealed that the averaging had converged to a set of
phases related to the correct phases by a shift of 180° (i.e.
the Babinet opposite of the correct phases). At this stage,
it was realised that phase extension from low to high reso-
lution can lead to four sets of phases: the correct phases α,
their enantiomorphs –α, their Babinet opposite α + 180°
or the Babinet opposite of their enantiomorphs, –α + 180°
[36]. Essentially the same method was used to solve the
structures of φX174 [37] and cowpea chlorotic mottle virus
[38], but in these cases it led to useful maps.

Although phase extension was first used in the structure
determination of TMV, a spectacular application of the
technique occurred in 1984, in the structure determination
of haemocyanin [39]. Exploiting the sixfold NCS, Gaykema
et al. were able to extend phases from 4.0 to 3.2 Å. At the
end of this procedure, roughly half of all reflections to
3.2 Å (31,000 out of 64,000) had no heavy-atom phase
information (i.e. their phases had been obtained purely
due to the NCS).

The structure determination of GroEL [40] ten years later
was interesting for another reason, namely because it
started from essentially random phases. A mask covering
all seven monomers was used as the starting map, corre-
sponding to a resolution of perhaps 8 Å. The phasing
started at 8 Å and phases were slowly extended to 2.7 Å,
with periodic improvement of the NCS operators.

An interesting application of multiple crystal averaging led
to a much improved structure of HIV-1 reverse transcrip-
tase in complex with a nevirapine analogue [41]. It was
found that controlled dehydration of the crystals improved
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their diffraction quality. Data sets were collected at differ-
ent stages of dehydration, and averaging between these
data sets (and between domains within the crystals) gave a
significant improvement in map quality and a reduction of
model bias.

The determination of the structure of human protective
protein [42] provides a striking demonstration of how
twofold NCS can be exploited in a careful bootstrapping
procedure to overcome the deficiencies of a molecular
replacement model. The starting model was composed of
a core of about two-thirds of the molecule, and sidechains
were retained for only the 36% of the residues that are
identical in the search model, wheat serinecarboxypepti-
dase. Bootstrapping started with definition of a generous
envelope to cover the missing domain, followed by cycles
of averaging, model building and tightening of the enve-
lope in light of new structural detail. Model refinement
was delayed until the model was nearly complete, to avoid
problems of overfitting. This structure solution probably
succeeded because of the high solvent content (63%), the
fact that the NCS was rotational, the quality of the data
(precise and reasonably complete to 2.2 Å) and, of course,
the care taken by the investigators.

Case studies
Taq polymerase
An unsuccessful attempt to determine the structure of an
N-terminal deletion mutant of Taq polymerase provides
a cautionary tale about how and when NCS averaging
can fail. Crystals were grown in Edmonton from an
expression construct that differed slightly from the one
used by Waksman and co-workers to solve the structure
[43]. The crystal packing is similar, but in the crystals of
the Edmonton construct, a crystallographic twofold axis
has shifted slightly to become non-crystallographic. This
leads to a doubling of the unit cell and, hence, twofold
translational NCS with a translation of about half of a
unit cell edge (NEC Duke and RJR, unpublished data).
The structure could be solved by molecular replacement,
using a model derived from the Klenow fragment of
Escherichia coli pol I, but the model was poor and incom-
plete, and maps were too poor to allow productive
rebuilding. Twofold averaging failed to yield a signifi-
cant improvement. Failure can probably be blamed on
the nature of the NCS; a translation of half a unit cell
edge is the worst case, as discussed above, in which the
expected improvement is no better than what would be
obtained by solvent flattening alone.
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Figure 3

Application of local correlation to determine a
molecular envelope for pertussis toxin. A local
correlation map was computed for the non-
crystallographic twofold axis in pertussis toxin,
using the initial MIR map as input and a
sphere radius of 9 Å. A Cα trace from the final
refined model is superimposed for
comparison. (a) A view of the local correlation
map down the local twofold axis. (b) Same as
(a), but looking perpendicular to the local
twofold axis.



Pertussis toxin
The crystal structure of pertussis toxin was solved using
MIR phases from poorly isomorphous derivatives, in com-
bination with twofold averaging and solvent flattening
[24]. The initial phases had a mean figure of merit of 0.44,
and phasing power dropped dramatically beyond 6 Å reso-
lution, so the initial map was essentially uninterpretable.
The high solvent content of about two-thirds the unit-cell
volume and the fact that the local twofold does not parallel
any of the crystallographic symmetry axes were probably
essential for success.

The unit-cell volume was sufficient to contain two or
three pertussis toxin molecules of 105 kDa in the asym-
metric unit. The absence of significant non-origin peaks in
a low-resolution native Patterson map ruled out transla-
tional NCS. Surprisingly, there are also no significant
peaks in self-rotation functions and, even now that we
know the correct structure, we cannot find a peak at the
correct rotation. (This might be explained by the signifi-
cant difference in overall B values among the molecules
that emerged from the refinement.) The NCS operations
could not be determined from heavy-atom positions,
because these do not obey the NCS; instead, they were
determined using real-space molecular replacement tech-
niques (see Figure 2). The rotational component was
determined first with a domain rotation function. The
locations of two unique molecules were clear in a
Wang–Leslie envelope; therefore, two spheres of density
could be isolated and an unambiguous peak of 9.3 times
the root mean square (rms) function value was obtained in
a cross-rotation function. When one of the spheres was
rotated and used in a phased translation function, an even

less ambiguous peak was found (70 times the rms devia-
tion). The NCS operation, defined in this way, turned out
to be very accurate and was not changed significantly by
subsequent refinement.

Because the NCS operator defined a proper twofold rota-
tion, only a single envelope covering the dimer was
required. This was obtained by computing a local correla-
tion map with a 9 Å sphere radius, and choosing a contour
level that enclosed a slightly generous 44% of the asym-
metric unit (Figure 3). Averaging started from 6 Å resolu-
tion, with gradual phase extension to 3.5 Å. As the phases
improved, the mask was updated with local correlation
maps computed with smaller radii (eventually reduced to
7 Å), and contoured to enclose a smaller volume. The final
map was sufficient to allow a refinable model to be built,
although the availability of structural homologues was a
great help.

Shiga-like toxin B subunit–trisaccharide complex
The Shiga-like toxin I B subunit is a symmetrical pen-
tamer that binds to Gb3 glycolipid molecules on cell sur-
faces. The structure of the B subunit in complex with a
soluble trisaccharide analogue of Gb3 was solved, using
the unliganded B subunit [44] as a molecular replacement
model [45]. The crystals diffract weakly to 2.8 Å resolu-
tion, but the data beyond 3.5 Å are very poor. A high
degree of NCS in this structure was essential for obtaining
interpretable results.

There are four pentamers in the asymmetric unit, two of
which are related by a translation with a small rotational
component of about 6°. The translational NCS was
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Figure 4

The power of molecular averaging to remove model bias. (a) 2Fo–Fc
map calculated from a backwards traced model of α2u-globulin, which
was refined at 3.0 Å resolution without NCS restraints to yield a free R
value of 47%. Note that model bias makes the density look almost

convincing for several residues, even though the model is completely
wrong. (b) The fourfold averaged map clearly does not fit the model
from which the starting map was calculated. (c) Superimposing the
correct 2.5 Å model on the averaged map reveals an excellent fit.



revealed first by native Patterson maps computed with
upper resolution limits of 8–10 Å. Although the pentamers
have approximate fivefold symmetry, rigid-body refine-
ment of the 20 monomers revealed that none of the five-
fold axes is exact. Twenty separate envelopes therefore
had to be defined from the atomic coordinates. NCS is
obeyed most poorly in the trisaccharide-binding sites
(three per monomer), which are affected by crystal
packing, so an additional onefold envelope was defined to
surround the 60 carbohydrate binding sites and protect
them from solvent flattening. Carbohydrate density was
not interpretable in the initial model-phased maps, but it
was exceptionally clear in the averaged maps, in spite of
the poor data.

Endoglucanase I
The structure determination of endoglucanase I [46] was
complicated by the fact that only low-resolution data were
available (initially to 4.0 Å, later to 3.6 Å). A tentative mol-
ecular replacement solution was obtained, the correctness
of which could only be verified by means of molecular
averaging. A polyalanine version of the search model was
used to calculate a map that, not surprisingly, was poor and
had little sidechain detail. Twofold averaging at 4.0 Å res-
olution, however, resulted in a much improved map that
showed density for many bulky sidechains, as well as for
some parts of the structure that differed from the search
model. The twofold NCS was also essential for the refine-
ment to succeed. (The final model and its averaged
density are available as a collection of VRML ‘worlds’,
courtesy of Tom Taylor, on the World Wide Web at URL
http://alpha2.bmc.uu.se/vrml/.)

α2u-Globulin
With the structure of α2u-globulin (GJK et al., unpublished
data), which has fourfold NCS and was refined to 2.5 Å
resolution, we have carried out some experiments in order
to demonstrate the power of molecular averaging to
remove model bias, and to investigate the power of aver-
aging starting from near-random phases.

To demonstrate the ability of molecular averaging to over-
come model bias (which arises if phases derived from an
atomic model are used to calculate maps), we used a
model of this protein that was intentionally traced back-
wards [47]. This model was refined to 3.0 Å resolution,
without any NCS constraints or restraints (leading to a free
R value of 47%). This refined model, which has very few
scatterers in the right place, was used to generate a mask,
to calculate NCS operators and to calculate a 3.0 Å map
(Figure 4a). Subsequently, fourfold averaging was applied,
and the resulting map obviously does not agree with the
backwards traced model (Figure 4b). When the correct
2.5 Å model is superimposed, however, it clearly fits the
averaged density very well, despite the low resolution and
the poor starting phases (Figure 4c).

As discussed above, the structure of GroEL was solved
using sevenfold averaging procedures starting from near-
random phases. To investigate if even the fourfold NCS of
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Figure 5

The power of molecular averaging when starting from near-random
phases. (a) Map obtained from fourfold molecular averaging at 3.0 Å,
starting from a map that consisted only of the joint envelopes of the
four α2u-globulin monomers. The correct 2.5 Å model is shown
superimposed and clearly does not fit this map. (b) Map obtained from
the same starting point as in (a), but here the phases were gradually
extended from 8.0 to 3.0 Å. The correct 2.5 Å model is superimposed
and obviously fits the averaged density very well.



α2u-globulin might be sufficient to allow this, we generated
a mask around the correct 2.5 Å model, and used a starting
map that consisted only of the combined masks of the four
monomers. Averaging starting at 3.0 Å does not lead to a
correct set of phases (Figure 5a). If the averaging is started
at 8.0 Å and the phasing is gradually extended to 3.0 Å,
however, we again obtain a map that fits the 2.5 Å refined
model extremely well (Figure 5b). Hence, in this case even
mere fourfold NCS suffices to proceed from near-random
8 Å phases to correct 3 Å phases. Of course, this will only
constitute a method to solve structures, when an algorithm
is devised to construct a precise and accurate envelope with
the same near-random phases!
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